
The Fast Euclidean Distance Transform
Robotics 102: Introduction to AI & Programming

In lecture, we learned a fast algorithm for computing the Manhattan distance transform
of a binary image. The Euclidean distance is a better measure of how far away an obstacle
is from the robot at any cell, since our omnidrive robots can move in any direction. These
notes cover a fast algorithm to calculate the distance transform using Euclidean distance.
This algorithm was published in a paper by Felzenswalb et al. [1] in 2012.

1 1D Euclidean Distance Transform

The trick of the fast Euclidean distance transform is to define a parabola at each cell.
We will use the vertex form of a parabola:

y = a(x− h)2 + k

The vertex is the lowest point of the parabola, at (h, k).1 For each cell of our image, we
will draw one parabola where h is the index of the cell. For occupied cells, we will set
k = 0. For free cells, we will set k = ∞. For all the parabolas, we will set a = 1. The
lower envelope of the parabolas gives the squared distance transform.

Let’s look at an example to see how it works. Figure 1a shows a 1D binary image, where 0
indicates a free cell and 1 indicates an occupied cell. Figure 1b shows the three parabolas
which come from the occupied cells, with h values 1, 3, and 7 (see Figure 1b). The
parabolas from free cells are at infinity, so they do not show up on the graph.

(a)

(b)

Figure 1: The parabolas for the binary image in Figure 1a. The parabolas from the occupied
cells are given by the functions (x− 1)2, (x− 3)2, and (x− 7)2.

1You might be used to seeing a parabola written like this: y = ax2 + bx+ c. We can turn one form
into the other with some algebra.

1



Fast Euclidean Distance Transform ROB 102: Intro to AI & Programming

Figure 2: The lower envelope of the parabolas for the image in Figure 1a is drawn in green.
The red X’s indicate the value of the lower envelope at each index, which is equal to the squared
distance transform (DT [0] = 1, DT [1] = 0, DT [5] = 4, etc.).

1.1 Lower Envelope of Parabolas

The lower envelope of the parabolas is the function you would get if you traced along the
lowest points of the function. We can get the squared distance transform by evaluating
the lower envelope at each index.2 The lower envelope for our example is shown in
Figure 2

The lower envelope is a piecewise function, which we can represent by a list of parabolas
and the range of each one. To represent it in code, we will use two vectors: paras

will contain the index of the parabolas in the lower envelope. ranges will represent the
horizontal range that each parabola acts over. The parabola at paras[i] will be active
from ranges[i] to ranges[i+1].

This is illustrated for our example in Figure 3. The lower envelope vectors are:

paras =
[
1 3 7

]
, ranges =

[
−∞ 2 5 ∞

]

Figure 3: The lower envelope of the parabolas is represented by a vector of the parabola
indices, paras, and a vector of their active ranges, ranges.

2If we want the normal distances rather than the squared distances, we simply take the square root.

2



Fast Euclidean Distance Transform ROB 102: Intro to AI & Programming

The distance transform at each index i can be evaluated using the piecewise function
that describes the lower envelope:

DT [i]2 =


(i− 1)2 i < 2

(i− 3)2 2 ≤ i < 5

(i− 7)2 i ≥ 5

1.2 1D Euclidean Distance Transform Algorithm

The algorithm for computing the distance transform has two steps:

1. Calculate the lower envelope of the parabolas.

2. Fill in the distance transform by evaluating the lower envelope at each index.

Before we introduce the algorithm, we will define a vector f , with the same length as the
1D image, and the values:3

f [i] =

{
0 if i is occupied

∞ if i is free
(1)

The function for the parabola from index i is:

y = (x− i)2 + f [i] (2)

Algorithm 1 The 1D Euclidean Distance Transform

1: function DistanceTransform1D(f)
2: N = length of f
3: paras = [0] ▷ Initialize lower envelope with the parabola at 0
4: ranges = [−∞,∞]
5: for i = 1 to N-1 do ▷ Step 1: Compute lower envelope
6: k = length of paras - 1

7: s = intersection between parabolas from i and paras[k]

8: while s ≤ ranges[k] do ▷ Case (i): Remove unneeded parabolas
9: remove last element in paras

10: k = length of paras - 1

11: s = intersection between parabolas from i and paras[k]

12: append i to paras ▷ Case (ii): Add new parabola
13: ranges[k] = s

14: ranges[k+1] = ∞
15: DT = vector of N zeros ▷ Initialize distance transform
16: k = 0

17: for i = 0 to N-1 do ▷ Step 2: Update distance transform
18: while ranges[k+1] < i do
19: k += 1

20: DT[i] = (i - paras[k])2 + f[paras[k]]

21: return DT

3This is how we initialized the Manhattan distance transform in the algorithm we saw in class.

3



Fast Euclidean Distance Transform ROB 102: Intro to AI & Programming

The main part of the algorithm is the computation of the lower envelope. We consider
the parabolas from one index at a time, starting at index 0. When we consider a new
parabola at index i, we will compute its intersection with the rightmost parabola in the
current lower envelope.

The horizontal component of the intersection between two parabolas can be obtained
with algebra. Consider two parabolas, coming from indices p and q, (i − p)2 + f [p] and
(i− q)2 + f [q]. Their intersection is:

s =
(f [p] + p2)− (f [q] + q2)

2p− 2q
(3)

Let’s say the rightmost parabola comes from index k. There are two cases to con-
sider:

(i) s > ranges[k]: The intersection for this new parabola comes after the beginning
of the range of the rightmost parabola in the current envelope. The new parabola
is added to the envelope, with range starting at s.

(ii) s ≤ ranges[k]: The intersection comes before the beginning of the range of the
rightmost parabola. This means that the rightmost parabola should be removed
from the lower envelope.

After considering each index and computing the lower envelope, the distance transform
is updated by evaluating the lower envelope values.

Example: Let’s look at the example image in Figure 1a. To make all the parabolas
visible, we will use an f value of 5 for free cells, instead of infinity.4 Consider the cell at
index 2 of the image, which is a free cell. When i = 2, we will have added two parabolas,
at 0 and 1, to the lower envelope already, shown in blue in Figure 4a. Our parabola
vector is paras = [0,1], and the ranges vector is ranges = [-∞,-2,∞].

(a) (b)

Figure 4: An illustration of the lower envelope computation for cell i = 2 (a) and cell i = 3
(b).

4This is a bad choice, but 5 happens to be higher than the highest squared distance (which is 4) in
this particular example, so it will still work.

4



Fast Euclidean Distance Transform ROB 102: Intro to AI & Programming

The parabola being considered is drawn in orange. The rightmost parabola in the enve-
lope is the parabola from paras[1] = 1, with range starting at ranges[1] = -2. First,
we calculate its intersection between the new parabola and the rightmost, s = 4. This is
an example of case (i), since s > ranges[1]. We add the new parabola to the envelope
starting at s = 4, making paras = [0,1,2] and ranges = [-∞,-2,4,∞].

Next, we consider the parabola from i = 3, shown in orange in Figure 4b. The intersection
with the rightmost parabola, from paras[2] = 2, is at s = 0. This is an example of case
(ii), since s ≤ ranges[2] = 4. The parabola at i = 2 is no longer a part of the lower
envelope, so we remove it, making paras = [0,1]. The new rightmost parabola is at
paras[1] = 1, which intersects with the current parabola at s = 2. This is case (i), since
s > ranges[1], so we add the new parabola to the envelope, making paras = [0,1,3]

and ranges = [-∞,-2,2,∞].

1.3 Why it works

It’s not a coincidence that we can find the distance transform by calculating the lower
envelope of parabolas. We can see why that is by writing down the problem the distance
transform more formally.

For each index, i, the distance transform is the distance to the nearest occupied cell. The
Euclidean distance between cell i and an occupied cell at index p is d(i, p) =

√
(i− p)2.

Squaring both sides gives us the formula for a parabola with vertex at (p, 0):

d(i, p)2 = (i− p)2 (4)

The squared distance transform is the smallest value of d(i, p)2 for all occupied cells
[p1, p2, . . . , pm]. We can write this mathematically:

DT [i]2 = min
(
(i− p1)

2, (i− p2)
2, . . . , (i− pm)

2
)

(5)

For the example image in Figure 1a, there are three occupied cells: p1 = 1, p2 = 3,
and p3 = 7. Notice that each squared distance function is a parabola in vertex form.
The distance transform in Equation (5) is just the formula for the lower envelope of the
parabolas!5

2 2D Euclidean Distance Transform

It turns out that we can compute the 2D distance transform using the 1D distance
transform algorithm on each row of the map, then on each column. The algorithm for
the 2D transform has three steps:

1. Initialize the distance transform using the same equation as for the 1D case:

DT [i, j] =

{
0 if index is occupied

∞ if index is free
(6)

2. Perform the 1D distance transform over each row.

3. Perform the 1D distance transform over each column.

5We can also write the distance transform in terms of all cells instead of just occupied cells, by
adding f [p], as defined in Equation (1) to each parabola.

5



Fast Euclidean Distance Transform ROB 102: Intro to AI & Programming

Algorithm 2 The 2D Euclidean Distance Transform

1: function DistanceTransform2D(map)
2: H, W = height and width of map
3: DT = vector of H×W zeros ▷ Initialize distance transform
4: for i = 0 to H-1 do
5: for j = 0 to W-1 do
6: if map[i, j] is occupied then
7: DT[i, j] = ∞
8: for i = 0 to H-1 do ▷ Perform 1D distance transform on rows
9: f = row i of DT
10: row i of DT = DistanceTransform1D(f)

11: for j = 0 to W-1 do ▷ Perform 1D distance transform on columns
12: f = column j of DT
13: column i of DT = DistanceTransform1D(f)

14: return DT

See the pseudocode in Algorithm 2. When we iterate over the rows in step (2), we use
the values of the distance transform for the current row as function f . The parabola for
index j in row r is:

y = (x− j)2 +DT [r, j]

The values of DT [r, j] will either be 0 or ∞. That is the same case as the 1D distance
transform. The difference is that when we apply the algorithm to the columns, we will
use the updated distance transform which contains the squared 1D distance transform
for that row. The parabola for an index i in column c will be:

y = (x− i)2 +DT [i, c]2

2.1 Example

To illustrate how the algorithm works, let’s use the small example in Figure 5. Recall
that the Euclidean distance transform will compute the squared distance to the nearest

Figure 5: A 2D binary image.

6



Fast Euclidean Distance Transform ROB 102: Intro to AI & Programming

occupied cell. By inspection, the (squared) distance transform for this image is:

DT 2 =


2 1 2 4 1 0
1 0 1 4 1 0
1 0 1 2 2 1
1 0 0 1 4 4
1 0 0 1 4 9
2 1 1 2 5 10


After step 2, the algorithm will give us the 1D distance transform over each row:

DT 2 =


25 16 9 4 1 0
1 0 1 4 1 0
1 0 1 4 9 16
1 0 0 1 4 9
1 0 0 1 4 9
∞ ∞ ∞ ∞ ∞ ∞


In step 3, we will update the column values, using the existing row values. For our
example, we will update the values in the first column using f = [25, 1, 1, 1, 1,∞], which
are the values of the first column in DT 2. The first index, i = 0, of the first column is
given by:

DT [0, 0]2 = min
(
(0− 0)2 + 25, (0− 1)2 + 1, (0− 2)2 + 1, (0− 3)2 + 1,

(0− 4)2 + 1, (0− 5)2 +∞
)

= min (25, 2, 5, 10, 17,∞)

This gives us DT [0, 0]2 = 2, which is the value we got by inspection.

Let’s take a look at the parabolas for the fifth column, shown in Figure 6. The last
parabola has a vertex at infinity, so we can’t see it on the graph. Evaluating the lower
envelope at each index gives us the correct values of the distance transform for the
column!

2.2 Why it works

For a 2D map, we need to define the distance transform with respect to the 2D Eculidean
distance. We will also include the vector f , which is we get from Equation (6). For an
image with N rows and M columns, the squared distance transform at cell (i, j) is defined
by:

DT [i, j]2 = min
0≤p<N, 0≤q<M

(
(i− p)2 + (j − q)2 + f [p, q]

)
(7)

This means that DT [i, j]2 is equal to the minimum Euclidean distance from the cell (i, j)
to each cell in the graph, (p, q), plus the value of f at (p, q).6 The first two terms in the
function in Equation (7) are independent of each other, so we can rewrite the function
like this:

DT [i, j]2 = min
0≤p<N

(
(i− p)2 + min

0≤q<M

(
(j − q)2 + f [p, q]

)
︸ ︷︷ ︸
1D distance transform for row p

)
(8)

6Remember that f will be infinity for the free cells, so this is the same as saying that the distance
transform is the distance to the nearest occupied cell.

7



Fast Euclidean Distance Transform ROB 102: Intro to AI & Programming

Figure 6: The parabolas for column 4 (the fifth column) of the test image. The lower envelope
is indicated in green, and the values of the lower envelop evaluated at each index are marked
with red X’s.

That means we can write our 2D distance transform in terms of two 1D distance trans-
forms:

DT [i, j]2 = min
0≤p<N

(
(i− p)2 +DT 2

p

)
(9)

where DT 2
p is the (squared) 1D distance transform for row p.

References

[1] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of sampled func-
tions,” Theory of computing, vol. 8, no. 1, pp. 415–428, 2012.

8


	1D Euclidean Distance Transform
	Lower Envelope of Parabolas
	1D Euclidean Distance Transform Algorithm
	Why it works

	2D Euclidean Distance Transform
	Example
	Why it works


